Optimizing Training: A Guide to Constructing Parameter Groups in PyTorch

2024-09-17

In PyTorch, optimizers handle updates to model parameters during training. When you create an optimizer, you can optionally group the model's parameters into distinct sets called parameter groups. Each parameter group can have its own set of hyperparameters, such as the learning rate, momentum, or weight decay. This allows you to fine-tune the optimization process for different parts of your model.

Creating Parameter Groups

There are two main ways to define parameter groups:

  1. Using a List of Dictionaries:

    • Construct a list where each element is a dictionary representing a parameter group.
    • The dictionary keys specify the hyperparameters you want to adjust for that group (e.g., lr, momentum, weight_decay).
    • The dictionary values define the corresponding values for those hyperparameters.
    • Pass this list to the optimizer's constructor.
    param_groups = [
        {'params': model.base.parameters(), 'lr': 1e-2},  # Lower LR for base layers
        {'params': model.classifier.parameters(), 'lr': 1e-3}  # Higher LR for classifier
    ]
    
    optimizer = torch.optim.SGD(param_groups)
    
  2. Using an Iterator of Tensors or a Single Dictionary (Default):

Benefits of Parameter Groups

  • Fine-Tuning Learning Rates: You can apply different learning rates to different parts of your model. For example, you might use a lower learning rate for layers that are already well-trained (e.g., pre-trained models) and a higher learning rate for layers you want to adapt more (e.g., newly added layers).
  • Adjusting Other Hyperparameters: You can customize other optimization hyperparameters (like momentum or weight decay) for specific parameter groups.
  • Modular Learning Rate Control: It simplifies adjusting learning rates during training. You can modify specific parameter groups' learning rates without affecting the entire model.

Example: Fine-Tuning a Pre-trained Model

Imagine you're fine-tuning a pre-trained convolutional base (e.g., VGG16) for a new image classification task. You might want to keep the base layers' weights relatively stable while allowing the newly added classifier layer to learn more freely. By using parameter groups, you can set a lower learning rate for the base layers and a higher learning rate for the classifier layer.




import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        # Load a pre-trained model (e.g., VGG16) and freeze its parameters
        self.base = nn.Sequential(...)  # Replace with your pre-trained model
        for param in self.base.parameters():
            param.requires_grad = False

        # Add a new classifier layer
        self.classifier = nn.Linear(1000, 10)  # Assuming pre-trained model has 1000 output features

    def forward(self, x):
        x = self.base(x)
        x = self.classifier(x)
        return x

# Create the model
model = MyModel()

# Define parameter groups
param_groups = [
    {'params': model.base.parameters(), 'lr': 1e-3},  # Low LR for frozen base
    {'params': model.classifier.parameters(), 'lr': 1e-2}  # Higher LR for classifier
]

# Create the optimizer with parameter groups
optimizer = torch.optim.SGD(param_groups)

Applying Different Learning Rates to Different Layers:

import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 64)
        self.fc3 = nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 28 * 28)  # Flatten input if needed
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x

# Create the model
model = MyModel()

# Define parameter groups (all parameters are separate groups here)
param_groups = [
    {'params': model.fc1.parameters()},
    {'params': model.fc2.parameters(), 'lr': 0.01},  # Different LR for fc2
    {'params': model.fc3.parameters()}
]

# Create the optimizer with parameter groups
optimizer = torch.optim.Adam(param_groups)



This approach involves creating a separate nn.ModuleDict to store your model's components grouped logically. Then, within each group, you can use nn.ModuleList to hold the individual layers. This allows you to easily access parameters for specific groups using the module hierarchy.

import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.base = nn.Sequential(nn.Linear(784, 128), nn.ReLU())
        self.classifier = nn.Sequential(nn.Linear(128, 64), nn.Linear(64, 10))
        self.params = nn.ModuleDict({
            'base': self.base,
            'classifier': self.classifier
        })

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = self.params['base'](x)
        x = self.params['classifier'](x)
        return x

# Create the model
model = MyModel()

# Access parameters for specific groups
base_params = model.params['base'].parameters()
classifier_params = model.params['classifier'].parameters()

# Create the optimizer with separate calls
optimizer = torch.optim.SGD([
    {'params': base_params, 'lr': 1e-3},
    {'params': classifier_params, 'lr': 1e-2}
])

Using Submodules:

You can define different sections of your model as submodules within the main model class. This allows you to access and potentially set different hyperparameters for each submodule's parameters directly through the optimizer.

import torch
import torch.nn as nn

class BaseModule(nn.Module):
    def __init__(self):
        super(BaseModule, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 64)

class ClassifierModule(nn.Module):
    def __init__(self):
        super(ClassifierModule, self).__init__()
        self.fc3 = nn.Linear(64, 10)

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.base = BaseModule()
        self.classifier = ClassifierModule()

    def forward(self, x):
        x = x.view(-1, 28 * 28)
        x = self.base(x)
        x = self.classifier(x)
        return x

# Create the model
model = MyModel()

# Create the optimizer with different hyperparameters for submodules
optimizer = torch.optim.SGD([
    {'params': model.base.parameters(), 'lr': 1e-3},
    {'params': model.classifier.parameters(), 'lr': 1e-2}
])

Choosing the Right Method:

  • The method using a list of dictionaries offers a concise and flexible way to define parameter groups.
  • The nn.ModuleDict and nn.ModuleList approach provides a clear organization within your model structure and easy access to parameters.
  • Using submodules can be helpful if you have well-defined, reusable components in your model.

pytorch



Understanding Gradients in PyTorch Neural Networks

In neural networks, we train the network by adjusting its internal parameters (weights and biases) to minimize a loss function...


Crafting Convolutional Neural Networks: Standard vs. Dilated Convolutions in PyTorch

In PyTorch, dilated convolutions are a powerful technique used in convolutional neural networks (CNNs) to capture larger areas of the input data (like images) while keeping the filter size (kernel size) small...


Building Linear Regression Models for Multiple Features using PyTorch

We have a dataset with multiple features (X) and a target variable (y).PyTorch's nn. Linear class is used to create a linear model that takes these features as input and predicts the target variable...


Loading PyTorch Models Smoothly: Fixing "KeyError: 'unexpected key "module.encoder.embedding.weight" in state_dict'"

KeyError: A common Python error indicating a dictionary doesn't contain the expected key."module. encoder. embedding. weight": The specific key that's missing...


Demystifying the Relationship Between PyTorch and Torch: A Pythonic Leap Forward in Deep Learning

Torch: Torch is an older deep learning framework originally written in C/C++. It provided a Lua interface, making it popular for researchers who preferred Lua's scripting capabilities...



pytorch

Demystifying DataLoaders: A Guide to Efficient Custom Dataset Handling in PyTorch

PyTorch: A deep learning library in Python for building and training neural networks.Dataset: A collection of data points used to train a model


PyTorch for Deep Learning: Effective Regularization Strategies (L1/L2)

In machine learning, especially with neural networks, overfitting is a common problem. It occurs when a model memorizes the training data too closely


Optimizing Your PyTorch Code: Mastering Tensor Reshaping with view() and unsqueeze()

Purpose: Reshapes a tensor to a new view with different dimensions, but without changing the underlying data.Arguments: Takes a single argument


Understanding the "AttributeError: cannot assign module before Module.__init__() call" in Python (PyTorch Context)

AttributeError: This type of error occurs when you attempt to access or modify an attribute (a variable associated with an object) that doesn't exist or isn't yet initialized within the object


Reshaping Tensors in PyTorch: Mastering Data Dimensions for Deep Learning

In PyTorch, tensors are multi-dimensional arrays that hold numerical data. Reshaping a tensor involves changing its dimensions (size and arrangement of elements) while preserving the total number of elements